
QUASICONFORMAL EXTENSIONS TO SPACE OF
WEIERSTRASS-ENNEPER LIFTS

M. CHUAQUI, P. DUREN, AND B. OSGOOD

To the memory of Professor F.W. Gehring

Abstract. The Ahlfors-Weill extension of a conformal mapping of the disk is generalized
to the Weierstrass-Enneper lift of a harmonic mapping of the disk to a minimal surface,
producing homeomorphic and quasiconformal extensions to space. The extension is defined
through the family of best Möbius approximations to the lift applied to a bundle of Euclidean
circles orthogonal to the disk. Extension of the planar harmonic map is also obtained subject
to additional assumptions on the dilatation. The hypotheses involve bounds on a generalized
Schwarzian derivative for harmonic mappings in terms of the hyperbolic metric of the disk
and the Gaussian curvature of the minimal surface. Hyperbolic convexity plays a crucial
role.

1. Introduction

If f is an analytic, locally injective function its Schwarzian derivative is

Sf =

(
f ′′

f ′

)′
− 1

2

(
f ′′

f ′

)2

.

We owe to Nehari [16] the discovery that the size of the Schwarzian derivative of f is related
to its injectivity, and to Ahlfors and Weill [3] the discovery of an allied, stronger phenomenon
of quasiconformal extension. We state the combined results as follows:

Theorem 1 (Nehari, Ahlfors-Weill). Let f be analytic and locally injective in the unit disk,
D.

(a) If

(1) |Sf(z)| ≤ 2

(1− |z|2)2
, z ∈ D,

then f is injective in D.
(b) If for some ρ < 1,

(2) |Sf(z)| ≤ 2ρ

(1− |z|2)2
, z ∈ D,

then f has a 1+ρ
1−ρ-quasiconformal extension to C.
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A remarkable aspect of Ahlfors and Weill’s theorem is the explicit formula they give for
the extension. They need the stronger inequality (2) to show, first of all, that the extended
mapping has a positive Jacobian and is hence a local homeomorphism. Global injectivity
then follows from the monodromy theorem and quasiconformality from a calculation of the
dilatation. The topological argument cannot get started without (2), but a different approach
in [8] shows that the same Ahlfors-Weill formula still provides a homeomorphic extension
even when f satisfies the weaker inequality (1) and f(D) is a Jordan domain. As to the
latter requirement, if f satisfies (1) then f(D) fails to be a Jordan domain only when f(D)
is a parallel strip or the image of a parallel strip under a Möbius transformation, as shown
by Gehring and Pommerenke [14].

In earlier work, [4], [6], we introduced a Schwarzian derivative for harmonic mappings in
the plane and we established an injectivity criterion analogous to (1) for the Weierstrass-
Enneper lift of a harmonic mapping of D to a minimal surface. For a very interesting
generalization we also call attention to the important paper of D. Stowe, [19]. In this paper
we show that homeomorphic and quasiconformal extensions also obtain in this more general
setting under a hypothesis analogous to (2). The construction is a geometric generalization
of the Ahlfors-Weill formula and extends the lift not just to the plane but to all of space.

To state our results we need some terminology and notation for harmonic mappings; we
refer to [11] for more details. Let D denote the unit disk in the complex plane and let
f : D → C be harmonic. As is customary, we write f = h + ḡ where g and h are analytic.
If |h′|+ |g′| 6= 0 and the dilatation ω = g′/h′ is the square of a meromorphic function, then

there is a lift w̃ = f̃(z) of f mapping D onto a minimal surface Σ in R3. The function f̃ is
called the Weierstrass-Enneper parametrization of Σ. Its three components are themselves
harmonic functions and f̃ is a conformal mapping of D onto Σ with conformal metric

f̃ ∗(|dw̃|2) = e2σ(z)|dz|2, eσ = |h′|+ |g′|,

on D. Then

〈∂xf̃ , ∂xf̃〉 = 〈∂yf̃ , ∂yf̃〉 = e2σ, 〈∂xf̃ , ∂yf̃〉 = 0, z = x+ iy,

where 〈·, ·〉 denotes the Euclidean inner product. The Gaussian curvature of Σ at a point

f̃(z) is

K(f̃(z)) = −e−2σ(z)∆σ(z).

As introduced in [4], the Schwarzian derivative of f̃ is

(3) S f̃ = 2(∂zzσ − (∂zσ)2).

This becomes the familiar Schwarzian when f̃ is analytic and Σ ⊂ C, where then σ = log |f̃ ′|.
The principal result of this paper is the following generalization of the Ahlfors-Weill the-

orem.

Theorem 2. Let 0 ≤ ρ ≤ 1. Suppose f̃ satisfies

(4) |S f̃(z)|+ e2σ(z)|K(f̃(z))| ≤ 2ρ

(1− |z|2)2
, z ∈ D.

Then f̃ is injective. If ρ < 1 then f̃ has a k(ρ)-quasiconformal extension E f̃ to R3. If ρ = 1

and ∂Σ is a Jordan curve then E f̃ is a homeomorphism.
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That f̃ is injective in D was proved in [6] in even greater generality, so the point here is

the extension. It was also proved in [6] that if f̃ satisfies (4) with ρ = 1 then f and f̃ have
spherically continuous extensions to ∂D. Furthermore, we know exactly when ∂Σ fails to be
a Jordan curve in R3, namely when either f̃ is analytic and f̃(D) is the Möbius image of a

parallel strip, or when f̃ maps D into a catenoid and ∂Σ is pinched by a Euclidean circle
on the surface. In either case, there is a Euclidean circle C on Σ and a point p ∈ C with
f̃(ζ1) = p = f̃(ζ2) for a pair of points ζ1, ζ2 ∈ ∂D. Furthermore, equality holds in (4) with

ρ = 1 along f̃−1(C \ {p}), and because of this a function satisfying the stronger inequality
with ρ < 1 or the strict inequality with ρ = 1 is always injective on ∂D.

It follows from properties of the Schwarzian and from Schwarz’s lemma that if f̃ satisfies
(4) then so does f̃ ◦M for any Möbius transformation M of D onto itself. Note also that
the condition trivially entails a bound on the curvature,

(5) e2σ(z)|K(f̃(z))| ≤ 2ρ

(1− |z|2)2
.

The extension E f̃ is defined in equation (9) in Section 2. It is constructed by setting up
a correspondence between two fibrations of space by Euclidean circles, one based on D and
the other on Σ. Fundamental properties of these fibrations rely on the convexity relative
to the hyperbolic metric of a real-valued function, denoted U f̃ and defined in Section 2.1,
naturally associated with conformal mappings of D into R3; it is the pullback under f̃ of the
square root of what can naturally be regarded as the Poincaré metric of Σ. The arguments
rely on comparison theorems for differential equations. Of particular interest is the use of a
Schwarzian derivative for curves introduced by Ahlfors, [2].

The correspondence between the two fibrations that defines E f̃ is via p 7→ Mf̃(p, ζ),

p ∈ R3, using the family Mf̃(p, ζ) of best Möbius approximations to f̃ parametrized by
ζ ∈ D. Sections 3 and 4 study best Möbius approximations in some detail and provide
formulas and properties that underly the proof of quasiconformality of E f̃ in Section 5.
Moreover, in Section 3 we show that restricting the extension E f̃ to C yields a reflection
R across ∂Σ with a formula quite like the Ahlfors-Weill reflection. In particular, R sews
the reflected surface, Σ∗ = R(Σ), onto Σ along the boundary. Then the topological sphere

Σ ∪ Σ∗ is a quasisphere, being the image of C under the quasiconformal mapping E f̃ of R3,
and ∂Σ is a spatial quasicircle, being the image of ∂D. When f is analytic all aspects of
the construction and the theorem reduce to the classical results, including the bound for the
quasiconformality of E f̃ which becomes k(ρ) = (1 + ρ)/(1− ρ).

Our analysis of the quasiconformality of E f̃ is very much influenced by C. Epstein’s insight-
ful treatment of the classical theorems in [12], which relies on aspects of hyperbolic geometry
of the upper half-space and parallel flow. However, as will be apparent, the nonzero curvature
of Σ is a considerable complication and a new approach is necessary.

As a corollary of this work, in Section 6 we will derive a sufficient condition for quasi-
conformal extension of planar harmonic mappings f = h + ḡ. This is perhaps closer to
the original Ahlfors-Weill result in that we obtain simultaneously an injectivity criterion for
harmonic mappings together with a quasiconformal extension.
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Theorem 3. Suppose f = h + ḡ is a locally injective harmonic mapping of D whose lift f̃
satisfies (4) for a ρ < 1 and whose dilatation ω satisfies

sup
ζ∈D

√
|ω(ζ)| <

1−√ρ
1 +
√
ρ
, ζ ∈ D.

Then f is injective and has a quasiconformal extension to C given by

F (ζ) =


f(ζ), ζ ∈ D

f(ζ∗) +
(1− |ζ∗|2)h′(ζ∗)

ζ̄∗ − (1− |ζ∗|2)∂zσ(ζ∗)
+

(1− |ζ∗|2)g′(ζ∗)

ζ∗ − (1− |ζ∗|2)∂z̄σ(ζ∗)
, ζ∗ =

1

ζ̄
, , ζ /∈ D.

This is essentially the Ahlfors-Weill formula applied to h and ḡ separately, and becomes
the classical formula exactly when f is analytic. The condition on ω makes certain that the
reflected surface Σ∗ is locally a graph. This is explained in Section 6.

We are grateful to many people for their comments. Especially, an earlier version of
this paper concentrated only on the reflection R and a two-dimensional extension, and we
were encouraged to develop the techniques presented here that give the extension to space.
Finally, we were colleagues and friends of Fred Gehring, and we respectfully dedicate this
paper to his memory.

2. Circle Bundles, Convexity, and Critical Points

This section introduces the central notions through which the extension E f̃ of f̃ to space
is defined: bundles of Euclidean circles orthogonal to D and to Σ = f̃(D), respectively, and

their correspondence via the family of best Möbius approximations to f̃ .
As a general configuration, let B be a smooth, open surface in R3, and consider a family

C(B) of Euclidean circles Cp, at most one of which is a Euclidean line, indexed by p ∈ B,
having the geometric properties:

(i) Cp is orthogonal to B at p and Cp ∩B = {p};
(ii) if p1 6= p2 then Cp1 ∩ Cp2 = ∅;

(iii)
⋃
p∈B Cp = R3 \ ∂B.

We refer to p ∈ Cp as the base point. If B is unbounded then there is no line in C(B), for a
line would meet B at its base point and at the point at infinity contrary to (i).

If such a configuration is possible for a given B, it is proper to refer to C(B) as a circle
bundle with base space B. The model example is B = D with Cζ , ζ ∈ D, the Euclidean
circle in R3 that is orthogonal to D and that passes through ζ and ζ∗ = 1/ζ̄. When ζ = 0

the circle is a line. Next, if T is a Möbius transformation of R3 then T (D) supports such a
circle bundle, and simply

(6) C(T (D)) = T (C(D)).

Under the assumptions of Theorem 2 one can push forward C(D) to get a circle bundle of

the same type on Σ by means of a family of Möbius transformations p 7→ Mf̃(p, ζ) of p ∈ R3,

approximating f̃ at each ζ ∈ D. They are defined as follows. Let w̃ = f̃(ζ). We require first

that Mf̃(·, ζ) maps C to the tangent plane Tw̃(Σ) to Σ at w̃ with Mf̃(ζ, ζ) = w̃. Next, for
any smooth curve ψ(t) in D with ψ(0) = ζ we further require that the orthogonal projection

of the curve f̃(ψ(t)) to Tw̃(Σ) has second order contact at w̃ with the curve Mf̃(ψ(t), ζ).

This is possible for harmonic mappings and by a parameter count Mf̃(p, ζ) is uniquely
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determined; see Section 3, where we will also provide a formula for Mf̃(z, ζ), for z ∈ C,
that is amenable to our calculations.

Now let C(Σ) be the family of circles

(7) Cw̃ =Mf̃(Cζ , ζ), ζ ∈ D, w̃ = f̃(ζ).

The main work of this section is then to prove:

Theorem 4. If f̃ satisfies (4) and is injective on ∂D then C(Σ) satisfies properties (i), (ii)
and (iii) above.

Clearly if T is a Möbius transformation of R3 then T (Σ) also supports such a circle bundle
and as in (6)

(8) C(T (Σ)) = T (C(Σ)).

We now define the extension E f̃ : R3 → R3 of f̃ by

(9) E f̃(p) =

{
Mf̃(p, ζ), p ∈ Cζ ,
f̃(p), p ∈ ∂D,

deferring discussion of the correspondence of ∂D and ∂Σ to the next section. Note that if
p ∈ D then E f̃(p) = f̃(p). The disjointness of the circles Cw̃ guarantees that E f̃ is injective
(when ∂Σ is a Jordan curve) and the fact that R3 =

⋃
w̃∈ΣCw̃ ∪ ∂Σ guarantees that it is

surjective. It is obviously a homeomorphism, even real analytic, off ∂D.

2.1. Hyperbolic Convexity, the Auxiliary Function U f̃ , and Ahlfors’ Schwarzian.
The proof of Theorem 4 is analytic and relies on the hyperbolic convexity and a study of
the critical points of the following function. For a conformal mapping Φ : D → R3 with
conformal metric e2τ(z)|dz|2 on D define

(10) UΦ(z) =
1√

(1− |z|2)eτ(z)
, z ∈ D.

From Schwarz’s lemma, if M is any Möbius transformation of D onto itself then

(11) U(Φ ◦M) = (UΦ) ◦M.

We will be considering the critical points of UΦ, for various Φ, and the importance of (11) is
that we can shift a critical point to be located at the origin, and not introduce any additional
critical points.

Lemma 1. If f̃ satisfies (4) and T is any Möbius transformation of R3 then U(T ◦ f̃) is

hyperbolically convex. If f̃ is injective on ∂D then U(T ◦ f̃) has at most one critical point in
D.

To explain the terms, a real-valued function u on D is hyperbolically convex if

(12) (u ◦ γ)′′(s) ≥ 0

for all hyperbolic geodesics γ(s) in D, where s is the hyperbolic arclength parameter. A

special case of Theorem 4 in [6] tells us that when f̃ satisfies (4) the function U f̃ is hyper-
bolically convex. The principle is that an upper bound for the Schwarzian leads to a lower
bound for the Hessian of U f̃ , and this leads to (12) when U f̃ is restricted to a geodesic. It is
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important more generally, as in the present lemma, that convexity holds for U(T ◦ f̃) where

T is a Möbius transformation of R3. The mapping T ◦ f̃ is typically not harmonic, but it is
still conformal and in (10) the function eτ for U(T ◦ f̃) is

(13) eτ = (|T ′| ◦ f̃)eσ.

To motivate the functions U f̃ , and U(T ◦ f̃), let

λD(z)2|dz|2 =
1

(1− |z|2)2
|dz|2

be the Poincaré metric for D and, supposing that f̃ is injective, let λ2
Σ|dw̃|2 be the conformal

metric on Σ with
f̃ ∗(λ2

Σ|dw̃|2) = λ2
D|dz|,

so that f̃ is an isometry. Since f̃ ∗(|dw̃|2) = e2σ|dz|2 we have

(14) (λΣ ◦ f̃)(z) =
1

(1− |z|2)eσ(z)
or λΣ ◦ f̃ = e−σλD,

and

(15) U f̃ = (λΣ ◦ f̃)1/2.

If f is analytic and injective in D and the plane domain Ω = f(D) replaces the minimal
surface Σ, then λΣ = λΩ is the Poincaré metric for Ω. It is reasonable to consider λΣ as the
Poincaré metric of Σ in the case of minimal surfaces. In [9] it was shown that the hyperbolic

convexity of λ
1/2
T (Ω) for any Möbius transformation T is a necessary and sufficient condition

for a function to satisfy the Nehari injectivity condition (1). The first part of Lemma 1 is
the analogous result for harmonic maps of the sufficient condition.

The proof of Lemma 1 employs a version of the Schwarzian for curves introduced by
Ahlfors in [2]. Let ϕ : (a, b)→ R3 be of class C3 with ϕ′(x) 6= 0. As a generalization of the
real part of the analytic Schwarzian, Ahlfors defined

(16) S1ϕ =
〈ϕ′′′, ϕ′〉
‖ϕ′‖2

− 3
〈ϕ′′, ϕ′〉2

‖ϕ′‖4
+

3

2

‖ϕ′′‖2

‖ϕ′‖2
.

If T is a Möbius transformation of R3 then

(17) S1(T ◦ ϕ) = S1ϕ,

a crucial invariance property.
Ahlfors’ interest was in the relation of S1ϕ to the change in cross ratio under ϕ, while

another geometric property of S1ϕ was discovered by Chuaqui and Gevirtz in [7]. Namely, if

v = ‖ϕ′‖
then

(18) S1ϕ =

(
v′

v

)′
− 1

2

(
v′

v

)2

+
1

2
v2κ2,

where κ is the curvature of the curve x 7→ ϕ(x). We will need the connection between S1

and the Schwarzian for harmonic maps, namely

S1f̃(x) ≤ Re{Sf(x)}+ e2σ(x)|K(f̃(x))|, −1 < x < 1;
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see Lemma 1 in [6]. Thus if f satisfies (4) then

(19) S1f̃(x) ≤ 2ρ

(1− x2)2
, −1 < x < 1.

We proceed with:

Proof of Lemma 1. To show U(T ◦ f̃) is hyperbolically convex it suffices to show that U(T ◦
f̃)′′(s) ≥ 0 along the diameter (−1, 1). For x ∈ (−1, 1) let ϕ(x) = (T ◦ f̃)(x). From (17) and
(19),

S1ϕ(x) = S1f̃(x) ≤ 2ρ

(1− x2)2
.

Next let

(20) v(x) = |ϕ′(x)| = eτ(x).

From (18),

(21)

(
v′(x)

v(x)

)′
− 1

2

(
v′(x)

v(x)

)2

≤ S1ϕ(x) ≤ 2ρ

(1− x2)2
.

Let 2P denote the left-hand side, so that

(22) 2P (x) ≤ 2ρ

(1− x2)2
, −1 < x < 1.

The function
V = v−1/2

satisfies the differential equation

(23) V ′′ + PV = 0

and the function

(24) W (x) =
V (x)√
1− x2

is precisely U(T ◦ f̃) restricted to −1 < x < 1. If we give −1 < x < 1 its hyperbolic
parametrization,

s =
1

2
log

1 + x

1− x
, x(s) =

e2s − 1

e2s + 1
, x′(s) = 1− x(s)2,

a calculation produces

d2

ds2
W =

(
1

(1− x2)2
− P (x)

)
(1− x2)2W (x), x = x(s),

and this is nonnegative by (22).

For the second part of the lemma, suppose that U(T ◦f̃) has two critical points. Composing

f̃ with a Möbius transformation of D onto itself we may locate these at 0 and a, 0 < a < 1.
By convexity they must give absolute minima of U(T ◦ f̃) in D, and the same must be true

of U(T ◦ f̃)(x) for 0 ≤ x ≤ a. Hence U(T ◦ f̃) is constant on [0, a] and thus constant on
(−1, 1) because it is real analytic there.

It follows that the function v(x) = eτ(x) is a constant multiple of 1/(1 − x2)2. But then
V (x) = v(x)−1/2 is constant multiple of

√
1− x2, and from the differential equation (23) we
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conclude that p(x) = 1/(1− x2)2. In turn, from (18) and (21) this forces the curvature κ of

the curve x 7→ (T ◦ f̃)(x) to vanish identically. Thus T ◦ f̃ maps the interval (−1, 1) onto a
line with speed |ϕ′(x)| = v(x) = 1/(1 − x2), and so ϕ(1) = ϕ(−1) = ∞. This violates the

assumption that f̃ , hence T ◦ f̃ , is injective on ∂D. �

2.2. Critical Points of U f̃ . The crucial connection between critical points of U(T ◦ f̃) and
the circles in C(Σ) is that inversion can be used to produce a critical point exactly when the
center of inversion is on the circle. In fact, this is an analytical characterization of the circles
in C(D) and in C(Σ).

We denote Möbius inversion by

(25) Iq(p) =
p− q
‖p− q‖2

, p ∈ R3, with ‖DIq(p)‖ =
1

‖p− q‖2
.

Lemma 2. A point q ∈ R3 lies on the circle Cw̃ ∈ C(Σ), w̃ = f̃(ζ), if and only if U(Iq ◦ f̃)
has a critical point at ζ.

Proof. The statement also applies to the bundle C(D) by taking f̃ to be the identity. Consider
this case first, and assume further that ζ = 0. The lemma then says that q ∈ C0, the vertical
line in R3 through the origin, if and only if

UIq(z) =
‖z − q‖√
1− |z|2

has a critical point at 0. This is easy to check by direct calculation. The result for ζ ∈ D
follows from this and from (11) letting M be a Möbius transformation of the disk mapping
0 to ζ, since M ′ does not vanish in D and the extension of M to space maps C0 to Cζ .

Now take a general f̃ , fix ζ ∈ D, and let w̃ = f̃(ζ). Observe that U(Iq̃ ◦ f̃) has a critical

point at ζ if and only if U(Iq̃ ◦Mf̃(·, ζ)) has as well, because Mf̃(·, ζ) and f̃ agree at ζ to

first order. Suppose q̃ ∈ C̃w̃ with q̃ =Mf̃(q, ζ), q ∈ Cζ . As a Möbius transformation of R3

the mapping Iq̃ ◦Mf̃(·, ζ) sends q to ∞, and so up to an affine transformation it is Iq. But
from the first part of the lemma UIq has a critical point at ζ. This proves necessity, and the
argument can be reversed to prove sufficiency. �

Knowing how to produce a critical point, we now show what happens when there is one
(and only one).

Lemma 3. Let f̃ satisfy (4) and be injective on ∂D. Let T be a Möbius transformation of

R3. The following are equivalent:

(i) U(T ◦ f̃) has a critical point.

(ii) (T ◦ f̃)(D) is bounded.

(iii) U(T ◦ f̃)(reiθ) is eventually increasing along each radius [0, eiθ).

(iv) U(T ◦ f̃)(z)→∞ as |z| → 1.

Proof. If (iv) holds there is an interior minimum so (iv) =⇒ (i) is immediate.
Suppose (i) holds. We follow the notation in Lemma 1. We may assume the critical point

is at the origin. The value U(T ◦ f̃)(0) is the absolute minimum for U(T ◦ f̃) in D and so

eτ(z) ≤ eτ(0)

1− |z|2
, z ∈ D.
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Thus τ remains finite in D and ∞ cannot be a point on (T ◦ f̃)(D).

To show that (T ◦ f̃)(D) is bounded we first work along [0, 1). The hyperbolically convex

function W (x) = U(T ◦ f̃)(x) in (24) cannot be constant because 0 is the unique critical
point. Hence if x(s) is the hyperbolic arclength parametrization of [0, 1) with x(0) = 0

d

ds
W (x(s)) ≥ a, W (x(s)) ≥ as+ b,

for some a, b > 0 and all s ≥ s0 > 0. From this

v(x) =
1

V (x)2
≤ 1

(1− x2)
(
a
2

log 1+x
1−x + b

)2

= −1

a

d

dx

(
1

a
2

log 1+x
1−x + b

)
.

Therefore ∫ 1

0

eτ(x) dx =

∫ 1

0

v(x) dx <∞,

with a bound depending only on a, b, and s0, so (T ◦ f̃)(1) is finite.
This argument can be applied on every radius [0, eiθ), and by compactness the corre-

sponding numbers aθ, bθ, sθ can be chosen positive independent of θ. This proves that T ◦ f̃
is bounded, and hence that (i) =⇒ (ii).

For (ii) =⇒ (iii) we can first rotate and assume eiθ = 1. In the notation above, we need
to show for some x0 > 0 that W (x) is increasing for x0 ≤ x < 1.

We have to follow T by an inversion, so to simplify the notation let f̃1 = T ◦ f̃ and
U f̃1(z) = ((1− |z|2)eτ(z))−1/2. For a q ∈ R3 to be determined let

f̃2 = Iq ◦ f̃1, U f̃2(z) =
1√

(1− |z|2)eν(z)
, ν(z) = τ(z)− log |f̃1(z)− q|2.

Let W2(x) = U f̃2(x), x ∈ (−1, 1); again we know that W2(x(s)) is convex, where s is the
hyperbolic arclength parameter. Now

(26) ∇ν(0) = ∇τ(0) +
2

|q|2
(〈∂xf̃1(0), q〉, 〈∂yf̃1(0), q〉).

But also

∇U f̃2(0) = −1

2
e−ν(0)/2∇ν(0),

and from this equation and (26) it is clear we can choose q to make

W ′
2(0) = a > 0.

Convexity then ensures W2(x(s)) ≥ as.
To work back to W , write

(27) f̃1 =
f̃2

|f̃2|2
+ q,

whence

‖Df̃1‖ =
‖Df̃2‖
‖f̃2‖2

,
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and

W = W2‖f̃2‖.
The assumption we make in (ii) is that f̃1(D) = (T ◦ f̃)(D) is bounded, and (27) thus implies

that ‖f̃2‖ ≥ δ > 0. Therefore W (x(s)) ≥ aδs. By convexity, there is an x0 > 0 so that W (x)
is increasing for x0 ≤ x < 1. This completes the proof that (ii) =⇒ (iii).

Finally, if (iii) holds then for each θ there exists 0 < rθ < 1 such that

∂

∂r
U(T ◦ f̃)(rθe

iθ) ≥ aθ > 0.

By compactness the rθ can be chosen bounded away from 1 and the aθ bounded away from 0.
By hyperbolic convexity, along the tail of each radius U(T ◦ f̃)(r(s)eiθ) is uniformly bounded
below by a linear function of the hyperbolic arclength parameter s, which tends to ∞ as
r = r(s)→ 1. �

We now have:

Proof of Theorem 4. For (i), orthogonality is obvious, and suppose Cw̃ meets Σ at a second

point w̃′. Then the inversion Iw̃′ , which takes w̃′ to∞, produces a critical point for U(Iw̃′ ◦ f̃)

at ζ = f̃−1(w̃) by Lemma 2. But by Lemma 3, Iw̃′(Σ) is bounded.
For (ii), if there is a point w̃3 ∈ Cw̃1∩C̃w̃2 then the inversion Iw̃3 produces critical points for

U(Iw̃3 ◦ f̃) at the two distinct points ζ1 = f̃−1(w̃1) and ζ2 = f̃−1(w̃2), contradicting Lemma
1.

Finally for (iii), by definition the base points w̃ ∈ Σ for the circles Cw̃ cover Σ. Suppose

q 6∈ Σ. Then under inversion Iq(Σ) is bounded. Therefore by Lemma 3, Iq ◦ f̃ has a critical
point, and by Lemma 2 the point q is on some circle Cw̃, w̃ ∈ Σ. �

Remark. The differential equations argument in Lemma 1 is a version of what we have called
‘relative convexity’ in other work, [5], [6]. See also the paper of Aharonov and Elias [1]. The
relation between critical points of the Poincaré metric and the Ahlfors-Weill extension was
the subject of [8].

3. Best Möbius Approximations, I: Reflection across ∂Σ and the
Ahlfors-Weill Extension

To study the extension E f̃ we need an expression for the best Möbius approximations.
The first condition onMf̃ is that p 7→ Mf̃(p, ζ) maps C to the tangent plane Tw̃(Σ), where

w̃ = f̃(ζ) = Mf̃(ζ, ζ). Let N be a unit normal vector field along Σ. At each point w̃ ∈ Σ
we write H3

w̃(Σ) for the hyperbolic (upper) half-space over Tw̃(Σ) determined by Nw̃. Then

p 7→ Mf̃(p, ζ) is an isometry of H3 with H3
w̃(Σ), but the fact that these half-spaces vary

along Σ, unlike when Σ is planar, is at the root of the complications in our analysis.
In appropriate coordinates on the range we can take Tw̃(Σ) = C and regard Mf̃(z, ζ),

z ∈ C, as an ordinary complex Möbius transformation of C. With this convention, z 7→
Mf̃(z, ζ), z = x + iy, depends on six real parameters, each depending on ζ, and once

these are determined so is Mf̃(p, ζ) for p ∈ R3. Specifying Mf̃(ζ, ζ) = w̃ fixes two of the

parameters. Next, let ψ(t) be a smooth curve in D with ψ(0) = ζ. To match f̃ and Mf̃

along ψ to first order at w̃ it suffices to have ∂xf̃(ζ) = ∂xMf̃(ζ, ζ) because, using that

f̃ and Mf̃ are conformal, the same will then be true of the y-derivatives. It takes two
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more real parameters in Mf̃ to ensure this. We can use the final two parameters to make
the orthogonal projection of ∂xxf̃(ζ) onto Tw̃(Σ) equal to ∂xxMf̃(ζ, ζ), and because f̃ and

Mf̃ are harmonic (as functions of x and y) the second y-derivatives also agree. Finally,

a calculation using again the conformality of f̃ and of Mf̃ shows that ∂xyMf̃(ζ, ζ) agrees

with the tangential component of ∂xyf̃(ζ).

Requiring equality of the various derivatives of f̃ and Mf̃ is an alternate way of defining
Mf̃ and can be put to use to develop a formula for Mf̃(z, ζ) for z = x+ iy ∈ C. We have
found that the most convenient expression is

(28) Mf̃(z, ζ) = f̃(ζ) + Re{m(z, ζ)}∂ξf̃(ζ) + Im{m(z, ζ)}∂ηf̃(ζ), ζ = ξ + iη,

where

(29) m(z, ζ) =
z − ζ

1− ∂ζσ(ζ)(z − ζ)
.

Note the two special values

(30) m(ζ, ζ) = 0, m(ζ∗, ζ) =
1− |ζ|2

ζ̄ − ∂ζσ(ζ)(1− |ζ|2)
.

We verify that (28) meets the requirements in the preceding paragraph.

Immediately Mf̃(ζ, ζ) = f̃(ζ), from m(ζ, ζ) = 0. Next, with ζ fixed and z = x + iy
varying, differentiate the right-hand side of (28) with respect to x and set z = ζ. As

(31) ∂xm(z, ζ) =
1

(1− ∂ζσ(ζ)(z − ζ))2
,

we have simply ∂xm(z, ζ)|z=ζ = 1, thus

∂xMf̃(z, ζ)|z=ζ = 1 · ∂ξf̃(ζ).

Taking the second x-derivative we first have,

∂xxm(z, ζ) =
2∂ζσ(ζ)

(1− ∂ζσ(ζ)(z − ζ))3
,

whence
∂xxm(z, ζ)|z=ζ = 2∂ζσ(ζ),

and
∂xxMf̃(z, ζ)|z=ζ = 2 Re{∂ζσ(ζ)}∂ξf̃(ζ) + 2 Im{∂ζσ(ζ)}∂ηf̃(ζ)

= ∂ξσ(ζ)∂ξf̃(ζ)− ∂ησ(ζ)∂ηf̃(ζ).

Next, projecting onto ∂ξf̃(ζ) gives

〈∂xxMf̃(z, ζ)|z=ζ , ∂ξf̃(ζ)〉 = ∂ξσ(ζ)〈∂ξf̃(ζ), ∂ξf̃(ζ)〉 = e2σ(ζ)∂ξσ(ζ).

On the other hand, projecting ∂ξξf̃(ζ) onto ∂ξf̃(ζ) we get

〈∂ξξf̃(ζ), ∂ξf̃(ζ)〉 =
1

2
∂ξ〈∂ξf̃ , ∂xf̃)〉

∣∣∣∣
ζ

=
1

2
∂ξ(e

2σ)(ζ) = e2σ(ζ)∂ξσ(ζ),

as we should. Similarly, using

〈∂ξξf̃(ζ), ∂ηf̃(ζ)〉 = −〈∂ηηf̃(ζ), ∂ηf̃(ζ)〉 = −1

2
∂η〈∂ηf̃ , ∂ηf̃〉

∣∣∣∣
ζ

= −e2σ(ζ)∂ησ(ζ)
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we again get the correct equality. This completes the verification of (28).

As a point of reference we want to see the form that (28) takes when f̃ is analytic. In that
case

σ(ζ) = log |f̃ ′(ζ)|, and ∂ζσ(ζ) =
1

2

f̃ ′′(ζ)

f̃ ′(ζ)
,

and

(32) m(z, ζ) =
z − ζ

1− 1
2
(z − ζ)

f̃ ′′(ζ)

f̃ ′(ζ)

.

Then using the Cauchy-Riemann equations,

(33) Mf̃(z, ζ) = f̃(ζ) +m(z, ζ)f̃ ′(ζ).

For derivatives of Mf̃(z, ζ) with respect to z we obtain:

∂zMf̃(z, ζ) =
f̃ ′(ζ)(

1− 1
2
(z − ζ)

f̃ ′′(ζ)

f̃ ′(ζ)

)2 ,

∂zzMf̃(z, ζ) =
f̃ ′′(ζ)(

1− 1
2
(z − ζ)

f̃ ′′(ζ)

f̃ ′(ζ)

)3 ,

showing second order contact between f̃ and Mf̃ when z = ζ.

3.1. Reflection Across ∂Σ. The existence of the bundle C(Σ) allows us to define a reflec-
tion of Σ across its boundary. If w̃ ∈ Σ the circle Cw̃ intersects the tangent plane Tw̃(Σ)
orthogonally at a diametrically opposite point w̃∗ outside Σ, and we write

(34) w̃∗ = R(w̃),

for this correspondence. Equivalently, if w̃ = f̃(ζ) =Mf̃(ζ, ζ) then

(35) w̃∗ =Mf̃(ζ∗, ζ) = E f̃(ζ∗), ζ∗ = 1/ζ̄.

In this section we will show that R fixes ∂Σ pointwise.
From w̃∗ =Mf̃(ζ∗, ζ) and m(ζ, ζ) = 0 we obtain

(36) w̃∗ − w̃ = Re{m(ζ∗, ζ)}∂xf̃(ζ) + Im{m(ζ∗, ζ)}∂yf̃(ζ).

Moreover, from (10) we have

(37) ∂z logU f̃(ζ) =
ζ̄ − ∂zσ(ζ)(1− |ζ|2)

2(1− |ζ|2)
=

1

2m(ζ∗, ζ)
,

and so we also obtain

(38) ‖w̃∗ − w̃‖ =
eσ(ζ)

‖∇ logU f̃(ζ)‖
.

This is the length of the diameter of Cw̃ and we want to see that it tends to 0 as w̃ approaches
∂Σ. We formulate the result as:
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Theorem 5. Let d denote the spherical metric on R3. If f̃ satisfies (4) and is injective on
∂D then

d(R(f̃(ζ)), f̃(ζ))→ 0 as |ζ| → 1.

Proof. We divide the proof into the cases when U f̃ has one critical point and when it has
none. We work in the spherical metric because, first, f̃ has a spherically continuous extension
to ∂D (by [6]), and second, when U f̃ has no critical points we have to allow for shifting f̃
by a Möbius transformation.

Suppose U f̃ has a unique critical point, which, by (11), we can take to be at 0. The proof
of Lemma 3 shows that there is an a > 0 such that along any radius [0, eiθ)

(1− r2)
∂

∂r
U f̃(reiθ) ≥ a

for all r ≥ r0 > 0. (This corresponds to dW/ds ≥ a in the proof of Lemma 3, where s is the
hyperbolic arclength parameter.) It follows that

(39) (1− |ζ|2)‖∇U f̃(ζ)‖ ≥ a > 0,

for all |ζ| ≥ r0 > 0.
From (38)

|R(f̃(ζ))− f̃(ζ)| = eσ(ζ)

‖∇ logU f̃(ζ)‖
=
U f̃(ζ)eσ(ζ)

‖∇U f̃(ζ)‖

=
1

U f̃(ζ)

1

(1− |ζ|2)‖∇U f̃(ζ)‖
.

This tends to 0 as |ζ| → 1 because U f̃ becomes infinite (Lemma 3) and (1− |ζ|2)‖∇U f̃(ζ)‖
stays bounded below.

Next, supposing that U f̃ has no critical point, we produce one. That is, let T be a Möbius
transformation so that U(T ◦ f̃) has a critical point at 0. The preceding argument can be
repeated verbatim to conclude that

(40) ‖R′(T (f̃(ζ)))− T (f̃(ζ))‖ → 0 as |ζ| → 1,

where R′ is the reflection for the surface Σ′ = T (Σ). If the reflections were conformally
natural, if we knew that R′ ◦ T = T ◦ R, then we would be done. Instead, we argue as
follows.

Let ζ ∈ D, ζ 6= 0. The number ‖R′(T (f̃(ζ))) − T (f̃(ζ))‖ is the length of the diameter

of the circle CT (f̃(ζ)) based at T (f̃(ζ)) that defines the reflection R′, and it tends to 0

by (40). But now, if Cf̃(ζ) is the circle based at f̃(ζ), for the surface Σ then R(f̃(ζ))

is on Cf̃(ζ) (diametrically opposite to f̃(ζ)), and then T (R(f̃(ζ))) ∈ CT (f̃(ζ)). Therefore

‖T (R(f̃(ζ))) − T (f̃(ζ))‖ → 0 as |ζ| → 1, whence in the spherical metric d(R(f̃(ζ)), f̃(ζ))
tends to 0 as well and the proof is complete. �

Remark. Theorem 5 shows that R is indeed a reflection across ∂Σ, and that the extension
E f̃ is continuous at ∂D. In Section 5.4 we will show that R is quasiconformal, a property
needed for the proof of Theorem 3 on the quasiconformal extension of the planar harmonic
mapping f = h + ḡ. This separate fact is not necessary for the proof of Theorem 2, but it
follows from limiting cases of the estimates in Section 5.3.



14 M. CHUAQUI, P. DUREN, AND B. OSGOOD

Let Σ∗ = R(Σ). Then Σ ∪ ∂Σ ∪ Σ∗ is a topological sphere that is the image of C by the

quasiconformal mapping E f̃ of R3, in other words it is a quasisphere. Or, one might also
regard Σ as a (nonplanar) quasidisk, and given the many analytic and geometric character-
izations of planar quasidisks (see for example Gehring’s survey [13]) one might ask if any
have analogues for Σ. Some results in this direction are due to W. Sierra, who has shown in
[18] that if f̃ satisfies (4) then Σ is a John domain (a John surface) in its metric geometry,

and if f̃ is also bounded then Σ is linearly connected. Both these notions come from the
geometry of planar quasidisks and we will not define therm here, see [9]. Although Σ∗ will
most likely not be a minimal surface, one might expect it also to have these properties.

3.2. The Ahlfors-Weill Extension. It is possible to express the reflection R in terms
intrinsic to the surface Σ. Recall the function λΣ from (15), with λΣ ◦ f̃ = (U f̃)2. Using (36)
and (37) it is easy to verify that

(41) R(w̃) = w̃ + 2J(∇ log λΣ(w̃)),

where, following Ahlfors, J is the Möbius inversion centered at the origin,

(42) J(p) =
p

|p|2
.

The formula (41) will be important in Section 6. Here, we make contact with the classical

Ahlfors-Weill extension, which, when f̃ is analytic in D, can be written as

F (z) =


f̃(z), z ∈ D,

f̃(ζ) +
(1− |ζ|2)f̃ ′(ζ)

ζ̄ − 1
2
(1− |ζ|2)

f̃ ′′(ζ)

f̃ ′(ζ)

=Mf̃(1/ζ̄, ζ) ζ = 1/z̄, z ∈ C \ D.

Ahlfors and Weill did not express their extension in this form; see [8].
Alternatively, if λΩ|dw| is the Poincaré metric on Ω = f(D) then

F (z) =

f̃(z), z ∈ D,

f̃(ζ) +
1

∂w log λΩ(f̃(ζ))
, ζ = 1/z̄, z ∈ C \ D.

The equation (41) for the reflection gives exactly

(43) R(f̃(ζ)) = f̃(ζ) +
1

∂w log λΩ(f̃(ζ))

when f̃ is analytic.
The reflection defining the Ahlfors-Weill extension was expressed in a form like (43) also

by Epstein [12]. Still another interesting geometric construction, using Euclidean circles of
curvature, was given by D. Minda [15].

The Ahlfors-Weill reflection is conformally natural, meaning in this case that if M is a
Möbius transformation of C and Ω′ = M(Ω) with corresponding reflection R′, then R′◦M =
M ◦ R. From the perspective of the present paper this is so because all the tangent planes
Tz(Ω) to Ω can be identified with C, which is preserved by the extensions to R3 of the Möbius

transformations. In the more general setting, if M is a Möbius transformation of R3 then
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Σ′ = M(Σ) also supports a circle bundle C(Σ′) and hence an associated reflection R′. But
while it is true that C(M(Σ)) = M(C(Σ)) it is not true that

R′ ◦M = M ◦ R,
i.e., the reflection is not conformally natural. The reason is that the reflections R and R′
use tangent planes for Σ and Σ′, while M may map tangent planes for Σ to tangent planes
or tangent spheres for Σ′. We do not know how to define a conformally natural reflection,
at least one that is suited to our analysis.

3.3. A Bound on ‖∇ logU f̃‖ and a Classical Distortion Theorem. In the proof of

Theorem 5 we needed the lower bound (39) on ‖∇U f̃‖. In Section 5.3, where we bound the

dilatation of the extension E f̃ to prove its quasiconformality, we will need a corresponding
upper bound (to be used again in connection to (38)). We state the result as

Lemma 4. If f̃ satisfies (4) then

(44) ‖∇ logU f̃(ζ)‖ ≤
√

2

1− |ζ|2
.

Proof. From (37), we want to show

(45)

∣∣∣∣∂zσ(ζ)− ζ̄

1− |ζ|2

∣∣∣∣ ≤ √
2

1− |ζ|2
.

For this we first derive a lower bound for ∇|∂zσ|. Let τ = |∂zσ|, so that τ 2 = ∂zσ∂z̄σ and

2τ∂zτ = ∂zzσ∂zσ + ∂z,z̄σ∂zσ = (∂zz̄σ + |∂zσ|2)∂zσ + (∂zzσ − (∂zσ)2)∂zσ.

Then
2τ |∂zτ | ≥ (∂zz̄σ + |∂zσ|2)τ − |∂zz̄σ − (∂zσ)2|τ ≥ τ 3 − τ

(1− |ζ|2)2
,

because in the first term σzz̄ ≥ 0 and in the second because of (4). Thus

|∂zτ | ≥ τ 2 − 1

(1− |ζ|2)2
.

The desired estimate at ζ = 0 is

(46) τ(0) = |∂zσ(0)| ≤
√

2,

and this will follow by showing that an initial condition a = τ(0) >
√

2 leads to the contra-
diction that τ becomes infinite in D. To this end, consider v(t) = τ(ζ(t)) along arc length
parametrized integral curves t 7→ ζ(t) to ∇τ . There exists such an integral curve starting at
the origin because

‖∇τ(0)‖ = 2|∂zτ(0)| ≥ 2τ(0)2 − 2 > 0.

The function v(t) satisfies

v′(t) = 2|∂zτ(z(t))| ≥ v2(t)− 1

(1− |ζ(t)|2)2
≥ v2(t)− 1

(1− t2)2
,

since |ζ(t)| ≤ t.
We compare v(t) with the solution y(t) of

y′ = y2 − 1

(1− t2)2
, y(0) = a,
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which is given by

y =
1

2

n′′

n′
,

where

n(t) =
n0(t)

1− an0(t)
, and n0(t) =

1√
2

(1 + t)
√

2 − (1− t)
√

2

(1 + t)
√

2 + (1− t)
√

2
.

Because a >
√

2 there exists 0 < t0 < 1 for which an0(t0) = 1. The function y(t) is increasing
for 0 ≤ t < t0 and becomes unbounded there. There are then two possibilities. Either v(t)
becomes infinite before or at t0, or the integral curve ceases to exist before that time. But
while v(t) is finite it is bounded below by y(t) ≥ a, hence |∇τ | does not vanish, as shown
above, so the integral curve can be continued. We conclude that v(t) must become infinite
before or at t0, and this contradiction shows that (46) must hold.

To deduce (45) at an arbitrary point ζ0 ∈ D we consider

f̃1(z) = f̃(M(z)), M(z) =
z + ζ0

1 + ζ̄0z
.

Then f̃1 satisfies (4) and its conformal factor is

eσ1(z) = eσ(M(z))|M ′(z)|.

From this

∂zσ1(0) = (1− |ζ0|2)∂zσ(ζ0)− ζ̄0,

and (45) at ζ0 is obtained from |∂zσ1(0)| ≤
√

2. �

Remarks. Suppose equality holds in (44), so in (45), at some ζ0 ∈ D. By composing f̃ with
a Möbius transformation of D onto itself we may suppose ζ0 = 0. The argument shows that
∂zz̄σ must then vanish along the integral curve ζ(t) from the origin. Hence the curvature of
the minimal surface Σ vanishes on a continuum and Σ must therefore be a planar. In turn
this means that f̃ = h + αh̃ for some constant α < 1 and an analytic function h for which
(4) holds. Because ∂zσ = (1/2)(h′′/h′) we see, from the case of equality in the analytic case,
that h must be an affine transformation of a rotation of the function n.

Lemma 4, on the one hand expressed as in (45), is reminiscent of the classical distortion
theorem for univalent functions, see, e.g., [10]. Namely, if f is analytic and injective in D
then

(47)

∣∣∣∣12 f ′′(ζ)

f ′(ζ)
− ζ̄

1− |ζ|2

∣∣∣∣ ≤ 2

1− |ζ|2
,

with equality holding at a point exactly when f is a rotation of the Koebe function k(ζ) =
ζ/(1− ζ)2. On the other hand, it was observed in [17] that (47) can be written in terms of
the Poincaré metric λΩ|dw| on Ω = f(D) as

‖∇ log λΩ‖ ≤ 4λΩ.

For the harmonic case we recall (14) and (15) where we had U f̃ = (λΣ◦f)1/2 with λΣ playing
the role of the Poincaré metric on Σ. The bound (44) becomes

‖∇ log λΣ‖ ≤ 2
√

2λΣ.



QUASICONFORMAL EXTENSIONS TO SPACE OF WEIERSTRASS-ENNEPER LIFTS 17

4. Best Möbius Approximations, II: Dependence on the base point

We return to properties of best Möbius approximations and examine howMf̃(z, ζ) varies

with the base point ζ. First, when f̃ is analytic and Mf̃(z, ζ) is given by (32) and (33) we
find

(48) ∂ζMf̃(z, ζ) =
1

2
f̃ ′(ζ)S f̃(ζ)m(z, ζ)2.

In particular

(49) ∂ζMf̃(z, ζ)
∣∣∣
ζ=z

= 0.

An additional such result is how the conformal factor |(Mf̃)′(z, ζ)| = |∂zMf̃(z, ζ)| depends
on ζ, for which we obtain

(50) ∂ζ log |∂zMf̃(z, ζ)| = 1

2
S f̃(ζ)m(z, ζ).

Again in particular

(51) ∂ζ |(Mf̃)′(z, ζ)|
∣∣∣
ζ=z

= 0.

Equations (49) and (51) have counterparts in the harmonic case.
Starting with (28),

∂ξMf̃(z, ζ) = ∂ξf̃(ζ) + Re{∂ξm(z, ζ)}∂ξf̃(ζ) + Re{m(z, ζ)}∂ξξf̃(ζ)

+ Im{∂ξm(z, ζ)}∂ηf̃(ζ) + Im{m(z, ζ)}∂ξηf̃(ζ),
(52)

and we calculate that

(53) ∂ξm(z, ζ) =
−1 + ∂ξ∂ζσ(ζ)(z − ζ)2

(1− ∂ζσ(ζ)(z − ζ))2
.

Similarly,

(54) ∂ηm(z, ζ) =
−i+ ∂η∂ζσ(ζ)(z − ζ)2

(1− ∂ζσ(ζ)(z − ζ))2
.

To do more with (52) we need to work with the second derivatives of f̃ . Recalling that N is
the unit normal to Σ, we can write

∂ξξf̃ = α11N + β11∂ξf̃ + γ11∂ηf̃ ,

∂ξηf̃ = α12N + β12∂ξf̃ + γ12∂ηf̃ ,

∂ηηf̃ = α22N + β22∂ξf̃ + γ22∂ηf̃ .

The αij are the components of the second fundamental form.
We find the other coefficients in terms of the derivatives of σ. For example, starting with
〈∂ξξf̃ , ∂ξf̃〉 = β11e

2σ, from the first equation we have also

β11e
2σ = 〈∂ξξf̃ , ∂ξf̃〉 =

1

2
∂ξ〈∂ξf̃ , ∂ξf̃〉 =

1

2
∂ξ(e

2σ) = (∂ξσ)e2σ.

Thus

β11 = ∂ξσ.
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Similar arguments apply to finding the other coefficients, and the final equations are:

(55)

∂ξξf̃ = α11N + ∂ξσ ∂ξf̃ − ∂ησ ∂ηf̃ ,
∂ξηf̃ = α12N + ∂ησ ∂ξf̃ + ∂ξσ ∂ηf̃ ,

∂ηηf̃ = α22N− ∂ξσ ∂ξf̃ + ∂ησ ∂ηf̃ .

The derivatives and the αij are to be evaluated at ζ, and N = Nw̃.
Substituting this into (52),

(56)

∂ξMf̃(z, ζ) = [Re {1 + ∂ξm(z, ζ) + ∂ξσ(ζ)m(z, ζ)}+ Im {∂ησ(ζ)m(z, ζ)}] ∂ξf̃(ζ)

+ [Im{∂ξm(z, ζ) + ∂ξσ(ζ)m(z, ζ)} − Re{∂ησ(ζ)m(z, ζ)}] ∂ηf̃(ζ)

+ [α11(ζ) Re{m(z, ζ)}+ α12(ζ) Im{m(z, ζ)}] Nw̃

Now let
C(z, ζ) = 1 + ∂ξm(z, ζ) + 2∂ζσ(ζ)m(z, ζ),

so that

(57)
∂ξMf̃(z, ζ) = Re{C(z, ζ)}∂ξf̃(ζ) + Im{C(z, ζ)}∂ηf̃(ζ)

+ [α11(ζ) Re{m(z, ζ)}+ α12(ζ) Im{m(z, ζ)}] Nw̃.

The terms in the expression for C(z, ζ) combine to result in

C(z, ζ) =
(∂ξ∂ζσ(ζ)− ∂ζσ(ζ)2)(z − ζ)2

(1− ∂ζσ(ζ)(z − ζ))2

= m(z, ζ)2(∂ξ∂ζσ(ζ)− ∂ζσ(ζ)2).

We can take this further, for with ∂ξ = ∂ζ +∂ζ̄ , and ∂ξ∂ζσ(ζ)−∂ζσ(ζ)2 = ∂ζζσ(ζ)−∂ζσ(ζ)2 +
∂ζζ̄σ(ζ) we obtain the final form

(58) C(z, ζ) = m(z, ζ)2

(
1

2
S f̃(ζ)− 1

4
e2σ(ζ)K(f̃(ζ))

)
.

For later use, let

(59)
v(z, ζ) = Re{C(z, ζ)}∂ξf̃(ζ) + Im{C(z, ζ)}∂ηf̃(ζ),

vn(z, ζ) = α11(ζ) Re{m(z, ζ)}+ α12(ζ) Im{m(z, ζ)},
exhibiting

(60) ∂ξMf̃(z, ζ) = v(z, ζ) + vn(z, ζ)Nw̃

as resolved into velocities tangential to and normal to Tw̃(Σ). If Σ were planar the normal
component would not be present. For the tangential component,

(61) ‖v(z, ζ)‖ ≤ 1

2
eσ(ζ)|m(z, ζ)|2|(|S f̃(ζ)|+ 1

2
e2σ(ζ)|K(f̃(ζ))|),

and for the normal component,

(62) |vn(z, ζ)| ≤ e2σ(ζ)|m(z, ζ)|
√
|K(f̃(ζ))|

by the Cauchy-Schwarz inequality and using that for minimal surfaces

(63) α2
11 + α2

12 = e4σ|K|.
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We record some corresponding equations for ∂ηMf̃(z, ζ). The calculations are very similar,
but the end result is a little different, namely

(64)
∂ηMf̃(z, ζ) = − Im{C ′(z, ζ)}∂ξf̃(ζ) + Re{C ′(z, ζ)}∂ηf̃(ζ)

+ [α12(ζ) Re{m(z, ζ)}+ α22(ζ) Im{m(z, ζ)}] Nw̃,

where

(65) C ′(z, ζ) = m(z, ζ)2

(
1

2
S f̃(ζ) +

1

4
e2σ(ζ)K(f̃(ζ))

)
.

Note that the curvature enters with a plus sign.
As consequences of these expressions we have

(66) ∂ξMf̃(z, ζ)
∣∣∣
z=ζ

= 0, ∂ηMf̃(z, ζ)
∣∣∣
z=ζ

= 0.

This is the analog to (49).

The result we seek on the conformal factor ‖DMf̃(z, ζ)‖ analogous to (51) is

(67) ∂ξ‖DMf̃(z, ζ)‖
∣∣∣
ζ=z

= 0, ∂η‖DMf̃(z, ζ)‖
∣∣∣
ζ=z

= 0.

Because z 7→ Mf̃(z, ζ) is conformal it suffices to show that

(68) ∂ξ‖∂xMf̃(z, ζ)‖
∣∣∣
ζ=z

= 0 = ∂η‖∂xMf̃(z, ζ)‖
∣∣∣
ζ=z

, z = x+ iy.

For this

∂xMf̃(z.ζ) = Re{∂xm(z, ζ)}∂ξf̃(ζ) + Im{∂xm(z, ζ)}∂ηf̃(ζ),

whence from (31)

‖∂xMf̃(z, ζ)‖ = |∂xm(z, ζ)|eσ(ζ) =
eσ(ζ)

|1− ∂ζσ(ζ)(z − ζ)|2
.

Next, we consider

log ‖∂xMf̃(z, ζ)‖ = σ(ζ)− log(1− ∂ζσ(ζ)(z − ζ))− log(1− ∂ζσ(ζ) (z − ζ))

= σ(ζ)− log(1− ∂ζσ(ζ)(z − ζ))− log(1− ∂ζ̄σ(ζ) (z − ζ)).

To establish (68) we can work with ∂ζ :

∂ζ log ‖∂xMf̃(z, ζ)‖ =
(∂ζζσ(ζ)− ∂ζσ(ζ)2)(z − ζ)

1− ∂ζσ(ζ)(z − ζ)
+

∂ζζ̄σ(ζ)(z − ζ)

1− ∂ζ̄σ(ζ) (z − ζ)

=
1
2
S f̃(ζ)(z − ζ)

1− ∂ζσ(ζ)(z − ζ)
−

1
4
e2σ(ζ)K(f̃(ζ))(z − ζ)

1− ∂ζ̄σ(ζ) (z − ζ)

=
1

2
S f̃(ζ)m(z, ζ)− 1

4
e2σ(ζ)K(f̃(ζ))m(z, ζ).

Equations (67) follow from m(ζ, ζ) = 0.
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4.1. An Application to Horospheres. In the next section we will use the equations above
in the proof of the quasiconformality of the extension E f̃ . One aspect of this is the geometry
of horospheres in H3 and their images under the mappings Mf̃(p, ζ) for varying ζ.

It is a result from hyperbolic geometry that if Hζ is a horosphere in H3 of Euclidean radius
a and with base point ζ, and if M : H3 → H3 is a Möbius transformation, then the Euclidean
radius a′ of the image horosphere M(Hζ), M(ζ) 6=∞, is

(69) a′ = ‖DM(ζ)‖a.

Certainly the analogous formula holds for Mf̃(p, ζ) mapping a horosphere Hζ ⊂ H3 to a

horosphere Hw̃ ⊂ H3
w̃(Σ), w̃ =Mf̃(ζ, ζ), but more can be said. Fix a horosphere Hζ0 ⊂ H3

of Euclidean radius a. For a different base point ζ the mapping p 7→ Mf̃(p, ζ) takes C to

the tangent plane Tw̃(Σ), w̃ =Mf̃(ζ, ζ) and takes Hζ0 to a horosphere Hw̃′ ⊂ H3
w̃(Σ) based

at w̃′ = Mf̃(ζ0, ζ) and of Euclidean radius, say, a′. Then w̃′ and a′ are both functions of
ζ = ξ + iη. From (66) we conclude

(70) ∂ξw̃
′|ζ=ζ0 = 0, ∂ηw̃

′|ζ=ζ0 ,

while from (68) and (69) we also have

(71) ∂ξa
′|ζ=ζ0 = 0, ∂ηa

′|ζ=ζ0 = 0.

Put another way, to first order at ζ0,

Hw̃0 =Mf̃(Hζ0 , ζ0) =Mf̃(Hζ0 , ζ) = Hw̃′ .

5. Quasiconformality of the Extension E f̃

Recall how the extension is defined, in (9), for points in space:

E f̃(p) =

{
Mf̃(p, ζ), p ∈ Cζ ,
f̃(p), p ∈ ∂D.

We will establish the existence of a constant k(ρ) such that

(72)
1

k(ρ)
≤

max‖X‖=1 ‖DE f̃(p)X‖
min‖X‖=1 ‖DE f̃(p)X‖

≤ k(ρ),

for p in the upper half-space; the arguments and estimates are identical if p is in the lower
half-space. Since E f̃ is a homeomorphism of R3 it then follows that E f̃ is k(ρ)-quasiconformal
everywhere.

A point p ∈ H3 is the intersection of a circle Cζ with a horosphere Hζ in H3 that is tangent

to D at ζ, and to assess the distortion one can regard E f̃ as acting in directions tangent to
and normal to the circles Cζ . As Cζ is orthogonal to Hζ at p the objective is thus to estimate

‖DE f̃(p)(X)‖ when a unit vector X is tangent to Cζ at p and when it is tangent to Hζ at p.
For this, we add a parameter t ∈ R to the circle-horosphere configuration, aiming to adapt
to minimal surfaces the parallel flow in hyperbolic space introduced by Epstein [12] in his
study of the classical Ahlfors-Weill extension.

We need a number of notions and formulas from the hyperbolic geometry of the upper half-
space H3. To begin with, the upper hemisphere over D in H3, denoted S(0) with parameter
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t = 0, is the envelope of the family of horospheres Hζ(0), ζ ∈ D, of Euclidean radius

a(ζ, 0) =
1

2
(1− |ζ|2).

Starting at the point p(ζ, 0) = Cζ ∩Hζ(0), follow the hyperbolic geodesic Cζ at unit speed
for a time t to the point p(ζ, t) = Cζ ∩Hζ(t), where the horosphere Hζ(t) (still based at ζ)
has radius

(73) a(ζ, t) = e2ta(ζ, 0) =
1

2
e2t(1− |ζ|2).

Here t > 0 moves p(ζ, t) upward from S(0) along Cζ and t < 0 moves p(ζ, t) downward
from S(0) along Cζ . Fixing t and varying ζ defines a surface S(t) that is simply a portion
of a sphere that intersects the complex plane along ∂D. It is the envelope of the family of
horospheres Hζ(t) and p(ζ, t) is the point of tangency between S(t) and Hζ(t). Varying t
as well then gives a family of hyperbolically parallel surfaces in H3. For t < 0 the surface
S(t) lies inside S(0) and for t > 0 it lies outside S(0). The limiting cases as t → ∓∞ are,
respectively, D and its exterior.

The mapping ζ 7→ p(ζ, t) is a parametrization of S(t), and one obtains

(74) p(ζ, t) =

(
1 + e4t

1 + e4t|ζ|2
ξ,

1 + e4t

1 + e4t|ζ|2
η,
e2t(1− |ζ|2)

1 + e4t|ζ|2

)
, ζ = ξ + iη.

It is an important fact that this is a conformal mapping. The corresponding conformal
metric on D is

(75)
1 + e4t

1 + e4t|ζ|2
|dζ|.

Consider now the configuration in the image on applying E f̃ . The circles Cζ in the bundle

C(D) map to corresponding circles Cw̃, w̃ = Mf̃(ζ, ζ), in the bundle C(Σ), and for each ζ
we have the one-parameter family of horospheres

Hw̃(t) =Mf̃(Hζ(t), ζ)

in H3
w̃(Σ). The circle Cw̃ intersects each of the horospheres Hw̃(t) orthogonally and we write

p̃(ζ, t) = Cw̃ ∩Hw̃(t), so that for each t the surface

Σ(t) = E f̃(S(t))

is parametrized by

(76) ζ 7→ p̃(ζ, t) =Mf̃(p(ζ, t), ζ), ζ ∈ D.
However, due to the curvature of Σ the surface Σ(t) need not be the envelope of the horo-
spheres Hw̃(t); they need not be tangent to Σ(t) at p̃(ζ, t) and the circle Cw̃ need not be

orthogonal to Σ(t) there. Put another way, while the derivative of E f̃ in the direction of

a circle Cζ will be tangent to the circle Cw̃, the derivative of E f̃ in directions tangent to
S(t) need not necessarily be tangent to the corresponding horospheres Hw̃. This is the key

difference in geometry between our considerations and the case when f̃ is analytic and Σ is
planar as considered by Epstein. It is also the reason that the dilatation of the extension
does not turn out to be a clean (1 + ρ)/(1− ρ).

Fix a point
p0 = p(ζ0, t0).
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In the direction of Cζ0 the extension acts as the fixed Möbius transformationMf̃(p, ζ0) and

we can express the derivative of E f̃ in that direction using the hyperbolic geometry of H3

and of H3
w̃0

(Σ). The calculation of the derivatives of E f̃ at p0 in directions tangent to S(t0)
is equivalent to finding the derivatives of the mapping (76) in the ζ-variable. This is why
we need the results in Section 4, and we are aided further by the fact that ζ 7→ p(ζ, t)
is a conformal mapping with a known conformal factor. Calculating the derivative in the
ξ-direction, the quantity we want is

(77) D(Mf̃)(p(ζ, t0), ζ)∂ξp(ζ, t0) + ∂ξMf̃(p(ζ, t0), ζ)

evaluated at ζ = ζ0. The first term contains the contribution from the differential of the
mapping Mf̃ while the second considers the variation of the Möbius approximations from
point to point. There is no essential difference in estimating the derivative in the η-direction
so we consider only (77). This is a consequence of the formulas (57) – (65) in Section 4 and

(74), or also because we can as well work with f̃ ◦M for any Möbius transformation M of
the disk.

The expression (77) represents a vector in the image of E f̃ and, to make use of the
geometry, when ζ = ζ0 we want to resolve it into components tangent to and normal to
Hw̃0(t0) – this is central to the argument. First note that since Mf̃(p, ζ) maps Hζ(t0)

to Hw̃(t0), the first term is tangent to Hw̃(t0) at E f̃(p(ζ, t0)) = Mf̃(p(ζ, t0), ζ). Moreover,

becauseMf̃(p, ζ) is a hyperbolic isometry between H3 and H3
w̃(Σ), the size of this first term is

determined by |∂ξp(ζ, t0)| together with the heights of p(ζ, t0) above C and ofMf̃(p(ζ, t0), ζ)
above Tw̃(Σ). We will show:

(A) The first term in (77) is the dominant one when considering the contributions to the
component tangent to Hw̃(t0).

(B) Except for the factor |∂ξp(ζ, t0)|, this first term equals in size the derivative of E f̃ in
the direction of the circle Cζ .

(C) The size of the terms in (77) normal to Hw̃(t0) are comparable to the derivative of

E f̃ in the direction of the circle Cζ .

5.1. Horospheres and Hyperbolic Stereographic Projection. While the first term in
(77) is relatively straightforward to analyze, the second is not. To do so we will use a variant
of stereographic projection based on horospheres and hyperbolic geodesics that is well suited
to our geometric arrangements and enables us to express a point p ∈ H3 using planar data.

For the model case, suppose p ∈ H3 lies on a horosphere H having Euclidean radius a that
is based at 0 ∈ C. Let C be the hyperbolic geodesic in H3 passing through p with endpoints
0 and a point q ∈ C. To relate p to q we introduce the angle of elevation φ of the point p as
sited from the origin. Let let er be the unit vector in the radial direction in C and let N be
the upward unit normal to C in H3. See Figure 1 (in profile). Then

p = ‖q‖ cosφ((cosφ)er + (sinφ)N),

or alternatively

(78) p = (cos2φ)q + 2a(sin2φ)N.

Note that φ depends on a. Letting 2r = ‖q‖, note also that

(79) r cosφ = a sinφ,
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Figure 1. Hyperbolic stereographic projection of q to p.

and that the height of p above the plane is

(80) h(p) = 2a sin2φ = r sin 2φ.

Just as for classical stereographic projection, rays in C from the origin correspond to
meridians on H and circles in C concentric to the origin correspond to parallels on H. It
follows that the mapping q 7→ p is conformal, and it is not difficult to show that the conformal
metric on the plane is cos2φ|dq|.

We want to use this to compute ∂ξMf̃(p(ζ, t0), ζ) at ζ0. Again, p0 = p(ζ0, t0) = Cζ0 ∩
Hζ0(t0). As in Section 4.1, consider a point ζ ∈ D different from ζ0 and the Möbius transfor-

mationMf̃(p, ζ). The image C =Mf̃(Cζ0 , ζ) is a circle orthogonal to Tw̃(Σ), w̃ =Mf̃(ζ, ζ),

passing through Mf̃(ζ0, ζ) and Mf̃(ζ∗0 , ζ). The image H =Mf̃(Hζ0(r0), ζ) is a horosphere

in H3
w̃(Σ) tangent to Tw̃(Σ) atMf̃(ζ0, ζ); say its radius is a. We can suppose thatMf̃(ζ0, ζ) is

the origin of coordinates in Tw̃(Σ) and apply (78) with C and H as above and q =Mf̃(ζ∗0 , ζ)
to write

(81) Mf̃(p0, ζ) = (cos2φ)Mf̃(ζ∗0 , ζ) + 2a(sin2φ)N.

Here N is the normal to Tw̃(Σ), and the quantities φ, a and N depend on ζ.

Now recall also from Section 4.1 that to first order at ζ0 we have Hw̃0 = Mf̃(Hζ0 , ζ0) =

Mf̃(Hζ0 , ζ). Thus for the purposes of computing the derivative ∂ξMf̃(p(ζ, t0), ζ) at ζ0 we

can regard Mf̃(ζ∗0 , ζ) as varying in the fixed plane Tw̃0(Σ) and as being projected to the
fixed horosphere Hw̃0 along a geodesic C whose one endpoint stays fixed at w̃0 and whose
other endpoint is varying in Tw̃0(Σ).

5.2. Components of ∂ξMf̃(p, ζ). Directly from (81) we compute

∂ξMf̃(p0, ζ) = −2 cosφ sinφ(∂ξφ)Mf̃(ζ∗0 , ζ) + (cos2φ)∂ξMf̃(ζ∗0 , ζ)

+ 2(∂ξa)(sin2φ)N + 4a sinφ cosφ(∂ξφ)N + 2a(sin2φ)∂ξN.
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Evaluate this at ζ = ζ0 using ∂ξa|ζ=ζ0 = 0 from (71), and to ease notation write φ0, a0, N0

for these quantities at ζ0:

∂ξMf̃(p0, ζ0) = (−2 cosφ0 sinφ0(∂ξφ)0)(Mf̃(ζ∗0 , ζ0)− 2a0N0)

+ cos2φ0 ∂ξMf̃(ζ∗0 , ζ0) + 2a0 sin2φ0 (∂ξN)0

We invoke (60) for z = ζ∗0 to substitute for ∂ξMf̃(ζ∗0 , ζ0):

(82)
∂ξMf̃(p0, ζ0) = (−2 cosφ0 sinφ0(∂ξφ)0)(Mf̃(ζ∗0 , ζ0)− 2a0N0)

+ cos2φ0v(ζ∗0 , ζ0) + cos2φ0 vn(ζ∗0 , ζ0)N0 + 2a0(sin2φ0)(∂ξN)0.

Now isolate the terms

(83) V0 = V(ζ0) = (−2 cosφ0 sinφ0(∂ξφ)0)(Mf̃(ζ∗0 , ζ0)− 2a0N0) + cos2φ0v(ζ∗0 , ζ0).

V0 is formed by omitting the terms that are present because Σ has curvature. Because of
the first-order congruence, as above, if there is no curvature the expression for V(ζ), for
ζ = ξ + iη0 varying in the ξ-direction from ζ0, is exactly the velocity of a point moving on
the fixed horosphere Hw̃0 under the hyperbolic stereographic projection of a point moving
with velocity v(ζ∗, ζ0) in the fixed plane Tw̃0(Σ). Thus in general when Σ has curvature,

V(ζ0), having no curvature terms, is tangent to Hw̃0 at E f̃(p0) =Mf̃(p0, ζ0). Moreover the
fact that hyperbolic stereographic projection is conformal with velocities scaling by cos2 φ
allows us to say, with (61) and ‖∂ξf̃‖ = ‖∂ηf̃‖ = eσ, that

(84)
‖V(ζ0)‖ = cos2φ0 ‖v(ζ∗0 , ζ0)‖

≤ 1

2
cos2φ0 e

σ(ζ0)|m(ζ∗0 , ζ0)|2|(|S f̃(ζ0)|+ 1

2
e2σ(ζ0)|K(f̃(ζ0))|).

We turn to the remaining two terms in (82),

(85) w0 = cos2φ0 vn(ζ∗0 , ζ0)N0 + 2a0(sin2φ0)(∂ξN)0,

and seek to write this in the form W0+W⊥
0 , for W0 = W(ζ0) tangent to and W⊥

0 = W⊥(ζ0)

normal to Hw̃0 at E f̃(p0) =Mf̃(p0, ζ0), respectively.

For this we use polar coordinates (r, θ) in the plane Tw̃0(Σ) with w̃0 =Mf̃(ζ0, ζ0) as the
origin and we let er and eθ be the orthonormal vectors in the radial and angular directions,
respectively. From the formula (28) for Mf̃ we have

(86) Mf̃(ζ∗0 , ζ0)− w̃0 = Re{m(ζ∗0 , ζ0)}∂ξf̃(ζ0) + Im{m(ζ∗0 , ζ0)}∂η(ζ0),

and because (as a general fact)

(∂ξN)0 = −(α11(ζ0)∂ξf̃(ζ0) + α12(ζ0)∂ηf̃(ζ0)),

we get

〈(∂ξN)0,Mf̃(ζ∗0 , ζ0)− w̃0〉 = −(α11(ζ0) Re{m(ζ∗0 , ζ0)}+ α12(ζ0) Im{m(ζ∗0 , ζ0)})
= −vn(ζ∗0 , ζ0).

Let

(87) 2r0 = ‖Mf̃(ζ∗0 , ζ0)− w̃0‖.
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Recalling that r0 cosφ0 = a0 sinφ0 from (79), we can write w0 as

w0 = cos2φ0 vn(ζ∗0 , ζ0)N0 − 2a0 sin2φ0 vn(ζ∗0 , ζ0)
1

2r0

er + 〈w0, eθ〉eθ

= cos2φ0 vn(ζ∗0 , ζ0)N0 − sinφ0 cosφ0 vn(ζ∗0 , ζ0)er + 〈w0, eθ〉eθ.

The vector 〈w0, eθ〉eθ is tangent to Hw̃0 at E f̃(p0) and points along the latitude through

E f̃(p0). We can find its magnitude. From (86),

2r0er = Re{m(ζ∗0 , ζ0)}∂ξf̃(ζ0) + Im{m(ζ∗0 , ζ0)}∂η(ζ0),

and so

2r0eθ = − Im{m(ζ∗0 , ζ0)}∂ξf̃(ζ0) + Re{m(ζ∗0 , ζ0)}∂ηf̃(ζ0).

Thus referring back to (85),

〈w0, eθ〉 = 2a2
0 sin2φ0〈(∂ξN)0, eθ〉

=
2a0

2r0

sin2φ0 e
−σ(ζ0)(α11(ζ0) Im{m(ζ∗0 , ζ0)} − α12(ζ0) Re{m(ζ∗0 , ζ0)})

= sinφ0 cosφ0 e
−σ(ζ0)(α11(ζ0) Im{m(ζ∗0 , ζ0)} − α12(ζ0) Re{m(ζ∗0 , ζ0)}).

The remaining terms in w0,

u0 = cos2φ0 vn(ζ∗0 , ζ0)N0 − sinφ0 cosφ0 vn(ζ∗0 , ζ0)er,

must be further resolved to

u0 = u1 + W⊥
0 ,

where u1 is tangent to the longitude through E f̃(p0) and W⊥
0 is normal to Hw̃0 at E f̃(p0).

It is easy to check that the vector u0 makes an angle π/2− φ0 with the tangent plane to

the sphere Hw̃0 at E f̃(p0), whence

‖u1‖ = ‖u0‖ cos
(π

2
− φ0

)
= sinφ0 cosφ0 |vn(ζ∗0 , ζ0)|,

while

‖W⊥
0 ‖ = ‖u0‖ sin

(π
2
− φ0

)
= cos2φ0 |vn(ζ∗0 , ζ0)|.

Therefore we can write

w0 = W0 + W⊥
0 ,

with

W0 = u1 + 〈w0, eθ〉eθ.
We compute

‖W0‖2 = ‖u1‖2 + 〈w0, eθ〉2

= ‖u1‖2 + sin2φ0 cos2φ0 [Im{α11(ζ0)m(ζ∗0 , ζ0)} − Re{α12(ζ0)m(ζ∗0 , ζ0)}]2

= sin2φ0 cos2φ0[(Re{α11(ζ0)m(ζ∗0 , ζ0) + Imα12(ζ0)m(ζ∗0 , ζ0))2

+ (Im{α11(ζ0)m(ζ∗0 , ζ0)} − Re{α12(ζ0)m(ζ∗0 , ζ0)})2]

= sin2φ0 cos2φ0(α11(ζ0)2 + α12(ζ0)2)(Re{m(ζ∗0 , ζ0)}2 + Im{m(z∗0 , ζ0)}2)

= sin2φ0 cos2φ0|m(ζ∗0 , ζ0)|2e4σ(ζ)|K(f̃(ζ0)|,
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where in the last line we have used α2
11 +α2

12 = e4σ|K|, (63). Finally, from the bound on |vn|
in (62),

‖W⊥
0 ‖ = cos2φ0 |vn| ≤ cos2φ0 |m(ζ∗0 , ζ0)|e2σ(ζ0)

√
|K(f̃(ζ0)|.

Taken together,

(88)

‖V0‖ ≤
1

2
cos2φ0 |m(ζ∗0 , ζ0)|2 eσ(ζ0)(|S f̃(ζ0)|+ 1

2
e2σ(ζ0)|K(f̃(ζ0))|),

‖W0‖ ≤ sinφ0 cosφ0 |m(ζ∗0 , ζ0)| e2σ(ζ0)

√
|K(f̃(ζ0))|,

‖W⊥
0 ‖ ≤ cos2φ0 |m(ζ∗0 , ζ0)| e2σ(ζ0)

√
|K(f̃(ζ0)|.

For the calculations in the next section it will be convenient to write these inequalities a
little differently. First,

(89) |m(ζ∗0 , ζ0)| = 2e−σ(ζ0)r0

from (86) and (87). Then the bounds for ‖V0‖ and ‖W⊥
0 ‖ become

(90)
‖V0‖ ≤ 2r2

0 cos2φ0 e
−σ(ζ0)(|S f̃(ζ0)|+ 1

2
e2σ(ζ0)|K(f̃(ζ0))|),

‖W⊥
0 ‖ ≤ 2r0 cos2φ0 e

σ(ζ0)

√
|K(f̃(ζ0)|.

We also bring in the radius a0 of the horosphere Hw̃0 ,

(91) a0 =
1

2
eσ(ζ0)e2t0(1− |ζ0|2),

using (69) and (73), and the equation r0 cosφ0 = a0 sinφ0 from (79). Then the bound for
‖W0‖ is

(92) ‖W0‖ ≤ 4r2
0 cos2φ0 e

−2t0

√
|K(f̃(ζ0))|
1− |ζ0|2

.

We summarize the principal results of this section in a lemma.

Lemma 5. Let p0 = p(ζ0, t0) ∈ Hζ0(t0) and let φ0 be the angle of elevation of E f̃(p0) ∈
Hw̃0 =Mf̃(Hζ0 , ζ0) measured from w̃0. Let 2r0 = ‖Mf̃(ζ∗0 , ζ0)− w̃0‖.Then

∂ξMf̃(p0, ζ0) = V0 + W0 + W⊥
0 ,

where V0 and W0 are tangent to and W⊥
0 is normal to Hw̃0 at E f̃(p0), with

(93)

‖V0‖ ≤ 2r2
0 cos2φ0 e

−σ(ζ0)(|S f̃(ζ0)|+ 1

2
e2σ(ζ0)|K(f̃(ζ0))|),

‖W0‖ ≤ 4r2
0 cos2φ0 e

−2t0

√
|K(f̃(ζ0)|
1− |ζ0|2

,

‖W⊥
0 ‖ ≤ 2r0 cos2φ0 e

σ(ζ0)

√
|K(f̃(ζ0)|.
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5.3. Estimating the Dilatation of E f̃ . The proof of Theorem 2 is completed by deriving
the bounds

(94)
1

k(ρ)
≤

max‖X‖=1 ‖DE f̃(p)X‖
min‖X‖=1 ‖DE f̃(p)X‖

≤ k(ρ),

We continue with the notation as above, in particular working at the fixed point p0 =
p(ζ0, t0) = Cζ0 ∩ Hζ0(t0) and w̃0 = f̃(ζ0). We estimate ‖DE f̃(p0)(X)‖, ‖X‖ = 1 for X
tangent to and normal to Cζ0 at p0.

Case I: X tangent to Cζ0 . Since E f̃ restricted to Cζ0 coincides with Mf̃(p, ζ0) we have

DE f̃(p0)(X) = DMf̃(p0, ζ0)(X), which is tangent to Cw̃0 at E f̃(p0). The magnitude of

DMf̃(p0, ζ0)(X) can in turn be expressed as the ratio of the heights of p0 ∈ H3 above C
and of E f̃(p0) =Mf̃(p0, ζ0) ∈ H3

w̃0
(Σ) above Tw̃0(Σ), say

(95) ‖DE f̃(p0)X‖ =
h(E f̃(p0))

h(p0)
.

Case II: X normal to Cζ0 . In this case X is a unit vector tangent to the surface S(t0) at
p0 and we take it to be in the ∂ξ-direction; recall (77) and the accompanying discussion.
Letting

δ0 = ‖∂ξp(ζ0, t0)‖,
we obtain

DE f̃(p0)(X) = DMf̃(p0, ζ0)(X) +
1

δ0

∂ξMf̃(p0, ζ0)

= DMf̃(p0, ζ0)(X) +
1

δ0

(V0 + W0 + W⊥
0 ).

Hence

‖DE f̃(p0)(X)‖ ≤ ‖DMf̃(p0, ζ0)(X)‖+
1

δ0

(‖V0‖+ ‖W0‖+ ‖W⊥
0 ‖)

=
h(E f̃(p0))

h(p0)
+

1

δ0

(‖V0‖+ ‖W0‖+ ‖W⊥
0 ‖).

On the other hand, since DMf̃(p0, ζ0)(X) is tangent to the image horosphere Hw̃0 =

Mf̃(Hζ0 , ζ0) we also have

(96)

‖DE f̃(p0)(X)‖ ≥ ‖DMf̃(p0, ζ0)(X)‖ − 1

δ0

(‖V0‖+ ‖W0‖)

=
h(E f̃(p0))

h(p0)
− 1

δ0

(‖V0‖+ ‖W0‖).

To deduce (94) we thus want to show two things:

(1) There exists a constant κ1 = κ1(ρ) < 1 such that

(97)
1

δ0

(‖V0‖+ ‖W0‖) ≤ κ1
h(E f̃(p0))

h(p0)
.

(2) There exists a constant κ2 = κ2(ρ) <∞ such that

(98)
1

δ0

‖W⊥
0 ‖ ≤ κ2

h(E f̃(p0))

h(p0)
.
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From the formula (74) for p(ζ, t) we calculate

δ0 =
1 + e4t0

1 + e4t0|ζ0|2
,

and for the height of p0 above C,

h(p0) = e2t0
1− |ζ0|2

1 + e4t0|ζ0|2
.

In the image, the height of E f̃(p0) above Tw̃0(Σ) is

h(E f̃(p0)) = 2r0 sinφ0 cosφ0,

from (80), where 2r0 = ‖Mf̃(ζ∗0 , ζ0)− w̃0‖, as in (87). We also bring in the radius a0 of the
horosphere Hw̃0 ,

a0 =
1

2
eσ(ζ0)e2t0(1− |ζ0|2),

using (69) and (73), and the equation r0 cosφ0 = a0 sinφ0 from (79). We then obtain

(99) δ0
h(E f̃(p0)

h(p0)
= 4r2

0 cos2φ0 e
−σ(ζ0) 1 + e−4t0

(1− |ζ0|2)2
.

The estimates in (93) allow us to express the sought for upper bound (97) as

(100) |S f̃(ζ0)|+ 1

2
e2σ(ζ0)|K(f̃(ζ0))|+ 2e−2t0 eσ(ζ0)

√
|K(f̃(ζ0))|
1− |ζ0|2

≤ κ1
2(1 + e−4t0)

(1− |ζ0|2)2
.

Let A0 denote the left-hand side of (100). Since f̃ satisfies (4),

(101)

A0 ≤
2ρ

(1− |ζ0|2)2
− 1

2
e2σ(ζ0)|K(f̃(ζ0)|+ 2e−2t0 eσ(ζ0)

√
|K(f̃(ζ0)|
1− |ζ0|2

=
2ρ

(1− |ζ0|2)2
− 1

2
B2

0 + 2B0C0

=
2ρ

(1− |ζ|20)2
+ 2C2

0 −
1

2
(B0 − 2C0)2,

where we have put

B0 = eσ(ζ0)

√
|K(f̃(ζ0))|, C0 =

e−2t0

(1− |ζ0|2)
.

The curvature bound (5) implies

(102) B0 ≤
√

2ρ

1− |ζ0|2
= e2t0

√
2ρC0.

Let ε ∈ (0, 1), to be determined, and define τ0 by

(103) e2τ0 =

√
2ε
√
ρ
.

Suppose first that t0 ≤ τ0. Then (102) implies B0 ≤ 2εC0. Hence from (101),

(104) A0 ≤
2ρ

(1− |ζ0|2)2
+ 2(1− (1− ε)2)C2

0 =
2ρ

(1− |ζ0|2)2
+

2ρ1e
−4t0

(1− |ζ0|2)2
,
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setting

(105) ρ1 = 1− (1− ε)2.

The number ρ1 increases with ε ∈ (0, 1) and 0 < ρ1 < 1. Hence (100) holds in this case with
κ1 = max{ρ, ρ1}.

Suppose next that τ0 ≤ t0. Begin with

A0 ≤
2ρ

(1− |ζ0|2)2
+ 2C2

0 =
2ρ

(1− |ζ0|2)2
+

2e−4t0

(1− |ζ0|2)2
≤ 2ρ2(1 + e−4t0)

(1− |ζ0|2)2

provided ρ2 can be chosen so that ρ+ e−4t0 ≤ ρ2(1 + e−4t0), that is so that

e−4t0 ≤ ρ2 − ρ
1− ρ2

.

Using (103) and τ0 ≤ t0 we are led to the optimal value

ρ2 = ρ
1 + 2ε2

ρ+ 2ε2
.

Here ρ2 is decreasing for ε ∈ (0, 1) and

3ρ

2 + ρ
< ρ2 < 1.

Finally, we choose ε as the unique solution in (0, 1) for which ρ1 = ρ2. This common value
defines a constant κ1 for which (100) holds, and thus proves the estimate (97).

Remark. Before continuing, we note that a simple approximation for this common value
when ρ ∼ 1 can be obtained by replacing both curves ρ1 = ρ1(ε), ρ2 = ρ2(ε) by straight
lines, giving

κ1 =
2 + ρ

4− ρ
.

It is of some interest to be more precise. The equation

1− (1− ε)2 = ρ
1 + 2ε2

ρ+ 2ε2

leads to

ρ = h(ε) =
2ε3(2− ε)

3ε2 − 2ε+ 1
.

The function h(ε) is monotonically increasing for ε ∈ (0, 1) with h(0) = 0 and h(1) = 1 and
has an inverse ε = k(ρ) with the same properties. Then the constant κ1 in (100) and (97) is

κ1 = 1− (1− g(ρ))2.

Moreover, using h′(1) = 0, h′′(1) = −3 we see that for ε ∼ 1,

h(ε) ∼ 1− 3

2
(1− ε)2,

hence

κ1 ∼ 1− 2

3
(1− ρ).

This agrees to first order with the approximation (2 + ρ)/(4− ρ) for ε ∼ 1.
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Finally, we prove (98), which, with (93) and (99) amounts to

e2σ(ζ0)

√
|K(f̃(ζ0)| ≤ κ2r0

2(1 + e−4t0)

(1− |ζ0|2)2
,

for an appropriate κ2. But now from (38), in Section 3.1 on the reflection across ∂Σ, we have

2r0 =
eσ(ζ0)

‖∇ logU f̃(ζ0)‖
,

and so the inequality we must show reduces to

eσ(ζ0)

√
|K(f̃(ζ0)| ‖∇ logU f̃(ζ0)‖ ≤ κ2

(1 + e−4t0)

(1− |ζ0|2)2

Lemma 4 provides the bound

‖∇ logU f̃(ζ0)‖ ≤
√

2

1− |ζ0|2
,

so it suffices to find κ2 with

√
2 eσ(ζ0)

√
|K(f̃(ζ0)| ≤ κ2

1− |ζ0|2
,

which by (5) will hold for

κ2 = 2
√
ρ.

The estimates (97) and (98) together show that

1− κ1 ≤
max‖X‖=1 ‖DE f̃(p)X‖
min‖X‖=1 ‖DE f̃(p)X‖

≤ 1 + κ1 + κ2,

which proves that E f̃ is quasiconformal in R3 with constant

k(ρ) =
1 + κ1 + κ2

1− κ1

.

The proof of Theorem 2 is complete.
In the classical case, when f̃ is analytic and Σ is planar, the result generalizes the classical

Ahlfors-Weill theorem to provide an extension to space, with the classical dilatation as well.

Corollary 1. If f is analytic in D and

|Sf(ζ)| ≤ 2ρ

(1− |z|2)2
, ρ < 1,

then Ef is (1 + ρ)/(1− ρ)-quasiconformal.

Proof. In this case the curvature is zero. We see from (100) that we may take κ1 = ρ and
from (93) and (98) that we may take κ2 = 0. �
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5.4. Quasiconformality of the Reflection R. Recall from Section 3.1 the reflection
R : Σ → Σ∗, defined via the circle bundle C(Σ) on Σ by setting R(w̃) = w̃∗, where for

the circle Cw̃ we have Cw̃ ∩ Tw̃(Σ) = {w̃, w̃∗}. Under R the unique critical point of U f̃
is mapped to the point at infinity while the rest of Σ is mapped to the surface Σ∗, and
Σ ∪ Σ∗ ∪ {∞} is a topological sphere. A limiting case of the preceding estimates allows us
to deduce that R is quasiconformal.

We must find bounds for ‖DE f̃(p)X‖ when p ∈ Σ and X is tangent to Σ at p. This is a
limit of the estimates in Case II, above, as t0 → −∞. For κ1, following the analysis when
t0 ≤ τ0 starting from (103), we may let τ0 → −∞ as well, whence ε→ 0, ρ1 → 0 and we can
take

(106) κ1 = ρ.

The value of κ2 is as before, namely κ2 = 2
√
ρ. Thus

Corollary 2. If f̃ satisfies (4) with ρ < 1 then the reflection R is k(ρ)-quasiconformal with

k(ρ) =
1 + ρ+ 2

√
ρ

1− ρ
=

(1 +
√
ρ)2

1− ρ
.

As before, when f̃ is analytic and Σ is planar the estimates involving the curvature and
the second fundamental form do not enter. In that case the bound reduces to the classical
(1 + ρ)/(1− ρ).

Remark. It is possible to show directly that R is quasiconformal using the formula

R(w̃) = w̃ + 2J(∇ log λΣ(w̃)), J(p) = p/‖p‖2.

Very briefly, we can regard w̃ 7→ R(w̃) as a vector field along Σ (not tangent to Σ) and then
compute its covariant derivative ∇XR in the direction of a vector X, ‖X‖ = 1, tangent to
Σ. Here ∇XR is the Euclidean covariant derivative on R3.

In terms of the function λΣ on Σ, (14), and the gradient Λ = ‖∇ log λΣ‖ one can show

4λ2
Σ

Λ2
(1− ρ) ≤ ‖∇XR‖ ≤

4λ2
Σ

Λ2
(1 +

√
ρ)2,

and the corollary follows. The derivation is interesting, but it requires more preparation.

6. Quasiconformal Extension of Planar Harmonic mappings

In this section we consider the problem of injectivity and quasiconformal extension for
the planar harmonic mapping f = h + ḡ under the assumption that its lift f̃ satisfies (4).
Our method is simply to project from Σ ∪ Σ∗ to the plane, and the reward is the similarity
of the resulting extension of the planar map to the classical Ahlfors-Weill formula applied
separately to h and ḡ.

However, (4) alone is not enough. In fact, we are in a situation reminiscent of the original
Ahlfors-Weill proof, where we need to know first that the projection is locally injective –
geometrically that Σ ∪ Σ∗ is locally a graph. If we assume that f is locally injective, sense-
preserving, and that its dilatation ω is the square of an analytic function, so |ω(ζ)| < 1, then
at least the surface Σ is locally a graph; see [11]. It may exhibit several sheets if f is not
injective, and the analysis in Lemma 6 below suggests that without a stronger assumption
on the dilatation the reflected surface Σ∗ need not be locally a graph. To address the latter
we have the following result.
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Lemma 6. Suppose that f = h + ḡ is locally injective with dilatation ω the square of an
analytic function, and that f̃ satisfies (4) for a ρ < 1. If ω satisfies

(107) sup
ζ∈D

√
|ω(ζ)| <

1−√ρ
1 +
√
ρ
, ζ ∈ D,

then Σ∗ is locally a graph.

Proof. Fix a point w̃0 = f̃(ζ0) on Σ. Let ϑ be the angle of inclination with respect to the

vertical of the tangent plane Tw̃0(Σ). From the formulas for the components of f̃ , i.e., the
formulas for the Weierstrass-Enneper lift, see [11], one can show that

(108) tanϑ =
2
√
|ω(ζ0)|

1− |ω(ζ0)|
.

Now let X be a unit tangent vector to Σ at w̃0 and let (DE f̃(ζ0)(X))> and (DE f̃(ζ0)(X))⊥be

respectively the tangential and normal components of DE f̃(ζ0)(X) Then the angle of incli-
nation of the tangent plane Tw̃∗0 (Σ∗) to Σ∗ at w̃∗0 = R(w̃0) is

ϑ+ tan−1 ‖(DE f̃(ζ0)(X))⊥‖
‖(DE f̃(ζ0)(X))>‖

.

The surface Σ∗ will be locally a graph at w̃∗0 if this angle is < π/2, and using (108) this
condition can be written

(109)
2
√
|ω(ζ0)|

1− |ω(ζ0)|
‖(DE f̃(ζ0)(X))⊥‖
‖(DE f̃(ζ0)(X))>‖

< 1.

We can use limiting cases of previous estimates for ‖DE f̃‖ to bound the ratio, namely
(96), (97) and (98), with κ1 = ρ, from (106), and κ2 = 2

√
ρ. This results in

2
√
|ω|

1− |ω|
‖(DE f̃(ζ0)(X))⊥‖
‖(DE f̃(ζ0)(X))>‖

≤ 4

√
|ω(ζ0)|

1− ω(ζ0)

√
ρ

1− ρ
.

The right-hand side will be < 1 precisely when√
|ω(ζ0)| <

1−√ρ
1 +
√
ρ
.

�

We restate Theorem 3 from the introduction, and proceed with the proof.

Theorem. If f = h + ḡ is a locally injective harmonic mapping of D whose lift f̃ satis-
fies (4) for a ρ < 1 and whose dilatation ω satisfies (107), then f is injective and has a
quasiconformal extension to C given by

F (ζ) =


f(ζ), ζ ∈ D

f(ζ∗) +
(1− |ζ∗|2)h′(ζ∗)

ζ̄∗ − (1− |ζ∗|2)∂zσ(ζ∗)
+

(1− |ζ∗|2)g′(ζ∗)

ζ∗ − (1− |ζ∗|2)∂z̄σ(ζ∗)
, ζ∗ =

1

ζ̄
, , ζ /∈ D.
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Proof. Without loss of generality we can assume that the unique critical point of U f̃ is the
origin. Let Π: R3 → C be the projection Π(x1, x2, x3) = x1 + ix2. We know that Σ ∪ Σ∗ is
locally a graph over C, and hence the mapping

F (ζ) =

{
f(ζ), ζ ∈ D,
(Π ◦ R)(f̃(ζ∗)), ζ 6∈ D

is locally injective. Note that F = Π ◦ E f̃ restricted to C.
Locating the critical point of U f̃ at the origin implies that F (z) → ∞ as |z| → ∞. By

the monodromy theorem we conclude that F is a homeomorphism of C. In particular, the
underlying harmonic mapping f is injective. Moreover, the assumption on ω implies that
the inclinations of both Σ and Σ∗ are bounded away from π/2, making the projection Π
quasiconformal. Since by Corollary 2 the reflection R is quasiconformal, so is F .

Let us verify that F has the stated form. From the Weierstrass-Enneper formulas (see
again [11]),

∂ξf̃ = (Re{h′ + g′}, Im{h′ − g′}, 2 Im{h′
√
ω}),

∂ηf̃ = (− Im{h′ + g′},Re{h′ − g′},−2 Re{h′
√
ω}),

from which

Π(∂ξf̃) = h′ + ḡ′, Π(∂ηf̃) = i(h′ − ḡ′).
Now recall that the reflection R is given in terms of the best Möbius approximation, from
(35), and when ζ is outside D we want the projection of

f̃(ζ∗) + Re{m(ζ∗, ζ)}∂ξ(ζ∗) + Im{m(ζ∗, ζ)}∂ηf̃(ζ∗).

This is

f(ζ∗) + Re{m(ζ∗, ζ)(h′(ζ∗)+ḡ′(ζ∗)) + i Im{m(ζ∗, ζ)}(h′(ζ∗)− ḡ′(ζ∗))

= f(ζ∗) +m(ζ∗, ζ)h′ +m(ζ∗, ζ) ḡ′(ζ∗),

which is exactly the formula for F (ζ). �

We can also conclude that Σ ∪ Σ∗ is a graph over C.
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